TABLE VII

CONSTANTS^a IN Eq. (4) FOR MOLAR VOLUMES OF FLUID ALONG THE MELTING CURVE

a'	b'	e'	d'	P_m range, $ m kg/cm^2$	rms dev., cm³/mol	
0	-0.17145	1	27.570	26-30	0.0006	
14.854	48.5273	-0.107253			0.0007	
1.075	51.1102	-0.161532	-3.2482	50-3555	0.0037	
		14.854 48.5273	14.854 48.5273 -0.107253	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -0.17145 1 27.570 26-30 14.854 48.5273 -0.107253 -10.0712 35-3555	

Pressure units in kg/cm² and volume units in cm³/mol.

2. Thermal expansion and compressibility of the fluid

The thermal expansion coefficient of fluid He³ along the melting curve exhibits a maximum in the vicinity of the triple point, as shown in Figs. 3 and 4. The maximum is broad compared to that for He⁴ and is less than one-half as large. In general, one expects α to increase with T and decrease with P; however, along the melting curve the "normal" behavior of α_I increasing with decreasing P_m and T_m indicates that P_m changes overcome T_m changes. For He⁴ the maximum in α_I appears to be a direct consequence of the λ -transition. In He³ the nuclear spin part of α_I becomes more negative at lower T, according to Goldstein (25), and it apparently overcomes the "normal" behavior of the nonspin part of α_I .

From values of α_f and β_f in Fig. 4, it is possible to compute the following thermodynamic quantities for fluid He³ along the melting curve:

$$(\partial P/\partial T)_{V} = \alpha_{f}/\beta_{f}; \qquad (5)$$

and

$$(C_P - C_V) = TV_f \alpha_f^2 \beta_f \,. \tag{6}$$

These quantities are shown as the curves in Fig. 10. Neither curve exhibits a maximum over the range studied. The plot of $(C_P - C_V)$ versus P_m is linear below 180 kg cm² and extrapolates to zero at $P_m = 47$ kg cm². This extrapolation gives a good determination of the point where α_f goes through zero on the melting curve.

The pressure-temperature locus of $\alpha_f = 0$ in the fluid domain is shown in Figs. 5 and 9. For completeness, the point of Taylor and Kerr (26) on the vaporization curve has been included. The points represented by open circles were obtained by extrapolation to zero of a series of α_f values measured at constant pressure and various temperatures. This could be done reliably because the slopes were quite constant. Extrapolations were made below about 1.4°K, the

³ Lee et al. (27) also reported a density maximum at approximately 0.5°K, presumably at saturation.